
Mapping Invasive Species in the Pacific: An Investigation

Carrol Chan Conservation Science Research Group The University of Newcastle SPREP

Introduced Species and the Pacific?

Naturalised species-accumulation curves for major biogeographical areas Figure 1: Map of the 9 Taxonomic Database Working Group continents Figure 2: Naturalised alien species-accumulation curves

20 Cumulative area of regions (10⁶ km²)

10

30

40

Published Database: https://glonaf.org/ Source: Van Kleunen et al 2015

Invasive species

Invasive species: The impacts...

What kind of impacts?

- Second most leading driver of global change
- Economic impacts
- Environmental harm: biodiversity, including decline or elimination of native species
- Human health

More importantly

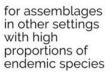
- Only a small portion of invasive species have been studied
- Climate change including cyclones
 threatens exacerbation

Cumulative records of alien species have increased by **40%** since 1980

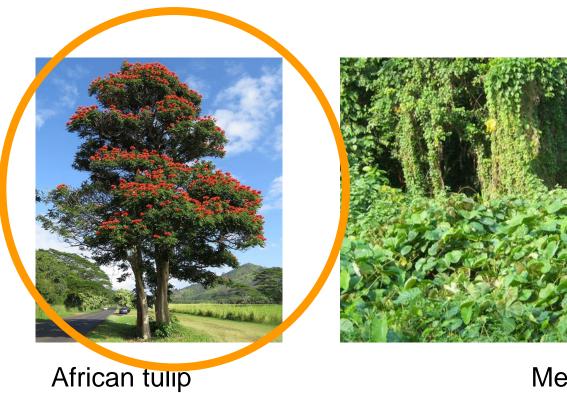
70%

Across a set of 21 countries with detailed records, the no of IAS per country have risen by ~**70%** since 1970

Invasive Alien Species can have devastating impacts on biodiversity



species



for mainland assemblages

Can we better manage invasive species in the Pacific using geospatial tools and technology?

The candidates

Merremia

Devils ivy

Where do we focus?

- Comprises of 10 islands, two main islands Savai'i and Upolu
- Majority of flora are of Malaysian origin
- Experiences high degree of economic and social shock during disaster years
- Is heavily impacted by the Merremia vine across agricultural fields and disturbed sites
- African Tulip and Taro vine are also common and have proliferated into urban areas

The African Tulip Tree

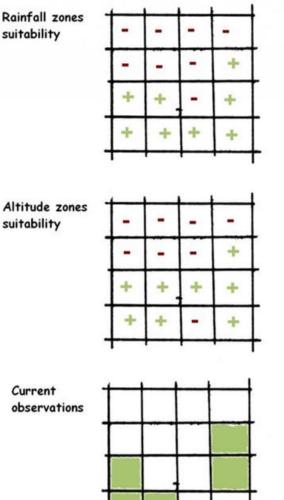
(Spathodea campanulata)

- 100 worst invasives by IUCN
- Limited literature
- Ornamental introduction, 1936 in Fiji
- Moist soils, sheltered tropical areas, elevations up to 1200m [1]
- Wind-blown seed and vegetative propagation
- Logistical growth curve (carrying capacity of 4000 trees per HA/40 yrs) [1]

CHARACTERISTICS

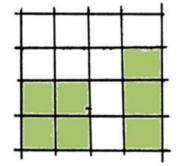
- Flowering (April -August; all year round in some places)
- Moist soils
- Sheltered tropical areas (shade tolerant)
- Elevations up to 1200m
- Wind-blown seed and vegetative propagation

We know a bit, but not a lot....

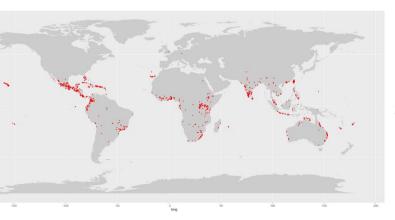

IAS characteristics are known to differ outside of their native range. Will climate change impact their distribution? How can we gain some insight into their behaviour in the Pacific region?

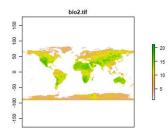
SPECIES DISTRIBUTION MODELLING

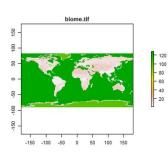
Expansion outside of native range ---- > **BEHAVIOUR**

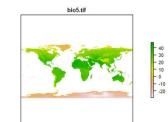

Current and future habitat suitability of African Tulip using available open data within the region -----> **RISK IDENTIFICATION**

Early Detection Tool

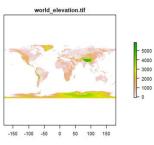



Habitat model based on suitable rainfall and altitude zones in combination with current observations

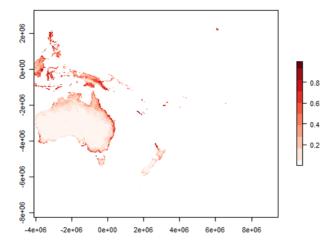



GBIF, iNATURALIST, field collected

SPECIES OCCURRENCE

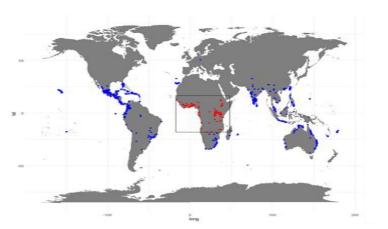


- 30

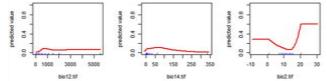

ENVIRONMENTAL PREDICTORS

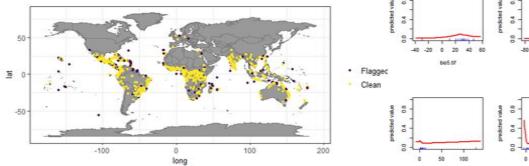
WorldClim (2.5m, 30sec) Bio1:19 variables Elevation, Slope, Hillshade Biomes

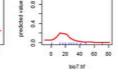
Predictor selection based on pvalues

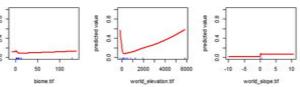

Removal of predictors based on >0.8 correlation

Pres Only - 30s African Tulip Global Suitability for Pacific Region

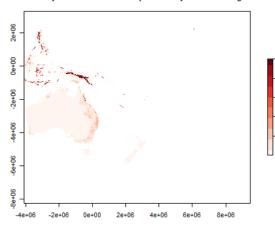



AFRICAN TULIP


- Maxent
- GBIF occurrence
- WorldClim Bio Variables
- **Global Biomes**
- Elevation, Slope, Hillshade
- Variable Selection Pearsons correlation Literature

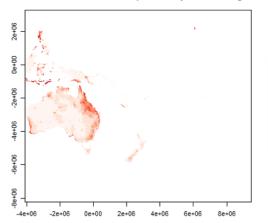


100	surray 1	MILE I	-	-	mor 1	selat *	sater 1	947-0 ⁻¹	weat 1	second *	and man of
	10000										
854.5	10000										
-	1400 TO										
with	strenets										
144.0											
	at Menter										
-											



40

bio6.tif


0 20

Pres Only NRP - 30s African Tulip Suitability for Pacific Region

Native Range Geographic Restriction

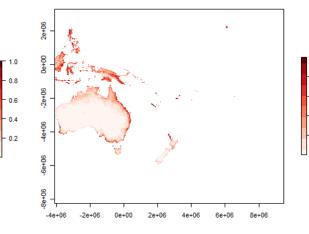
Pres/Abs NRP - 30s African Tulip Probability for Pacific Region

Pres Only - 30s African Tulip Global Suitability for Pacific Region

0.8

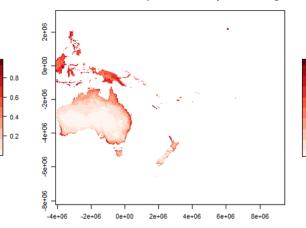
0.6

0.4

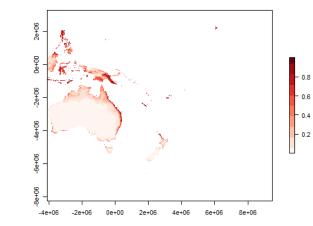

0.2

0.8

0.6

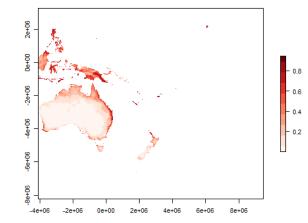

0.4

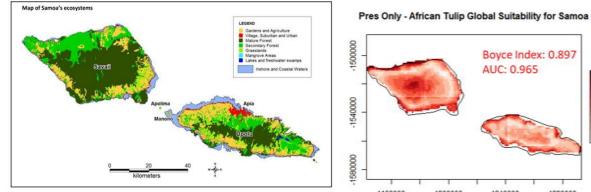
0.2

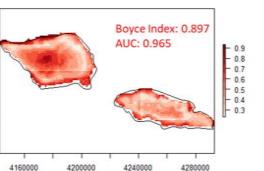


No Geographic Restriction

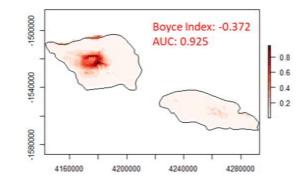
Pres/Abs - 30s African Tulip Global Probabilty for Pacific Region

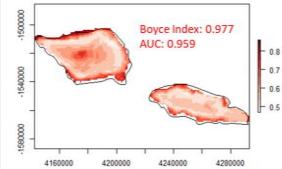


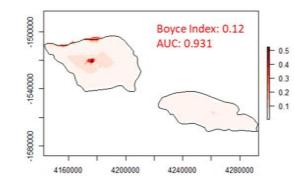

Pres Only - African Tulip Global Future Suitability for Pacific Region



Future Prediction (CIMP6)

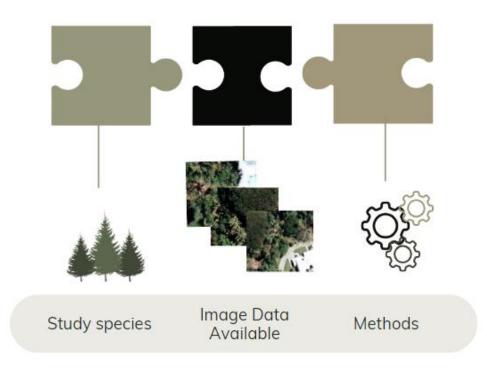

Pres/Abs - African Tulip Global Future Probabilty for Pacific Region





Pres/Abs - African Tulip Global Probabilty for Samoa

Pres/Abs NRP - African Tulip Probability for Samoa


Predicted vs Actual Distribution: Applying EO

Actual distribution benefits:

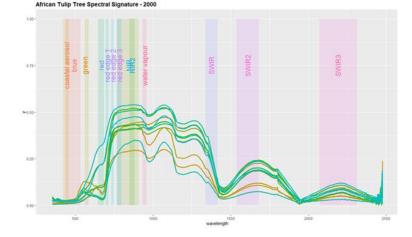
- 1. Quantitative result
- 2. Higher confidence interval
- 3. More requirements

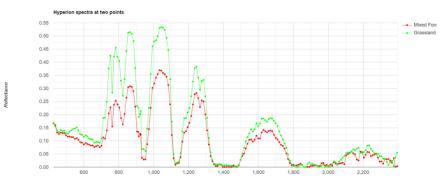
Classification of invasive species (species level) distribution using Earth Observation

Biocontrol monitoring

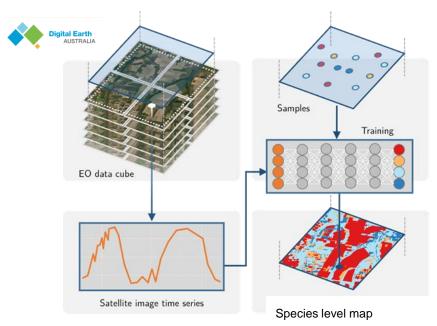
DEPENDENT ON SCALE OF MAPPING - > PURPOSE

What image data is available

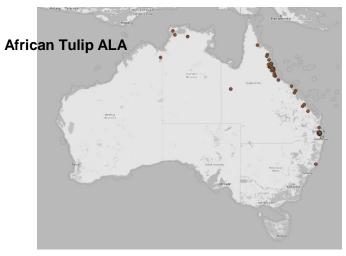

Investigating African Tulip Phenology - Case Study

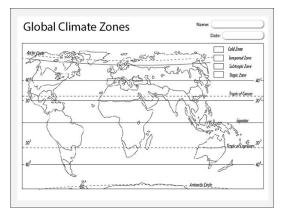

Hyperspectral recordings of datasets available

MATIMITAUL makeameme.org



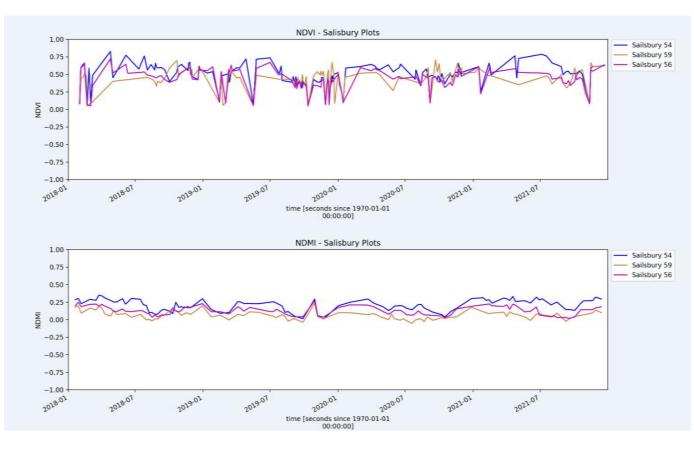
Wavelength (nanometers)


Species level mapping requires 'fancier data, technology and people'.... And dedicated funding



Investigating African Tulip Phenology - Case Study

Access tools for reproducibility >> PACIFIC APPLICATION



Deriving Insight using temporal sequences

Track distinct plant behaviour overtime phenology based

Behavior varies in different ecosystem, changes

MORE WORK IS NEEDED.....

- Integration of SDM results
- LiDAR Data structural characteristics of African Tulip
- Field validation
- More weeds to survey

QUESTIONS?

Contact Details Twitter: @cmhc23 Carrol.Chan@uon.edu.au

