

WORKSHP SESSION-1

WHAT IS SAR AND BENEFITS OF SAR

December 1, 2022

Dr Dipak Paudyal Managing Director & Chief Scientist APAC Geospatial Fellow SSSI Adjunct Associate Prof University of the Sunshine Coast

sarmap

APAC Geospatial

Exclusive Distributor of L3Harris Geospatial in Australia, NZ and the Southern Pacific

- 1. Remote Sensing/Image Analysis Software
- 2. Remote Sensing and Geospatial AI consulting services
- 3. Professional Services in applications of Remote Sensing
- 4. Training in Remote Sensing and Image Analysis

Channel Partner

Overview

- Introductions
- What is SAR?
- SAR benefits
- SAR in ENVI
- Applications

Harris Geospatial Solutions – SW Portfolio

ENVI

SARscape

Geospatial Services Framework

What is Synthetic Aperture Radar?

What is Synthetic Aperture Radar?

Backscatter Results: Amplitude and Phase

Amplitude and Phase

Amplitude/Intensity (A²)

Amplitude shows visual characteristics based upon scattering returns, which can give us information on surface roughness and dielectric properties.

Phase

The phase of one scene may not be visually useful, but phase allows for powerful techniques such as polarimetry and interferometry over multiple scenes. Why SAR?

TerraSAR-X -Indianapolis 07/01/ 2007

QuickBird - Indianapolis 07/01/ 2007

Camp Fire, California, USA

Optical imagery during Camp Fire vs SAR imagery of extent during the fire

Synthetic Aperture Radar Applications

Radar frequency and applications

Band	Frequency	Applications
VHF	300 kHz - 300 MHz	Foliage/ground penetration, biomass
Ρ	300 MHz - 1 GHz	Biomass, soil moisture, ground penetration
L	1 - 2 GHz	Agriculture/forestry, soil moisture, ground penetration
S	3-4 GHZ	Agriculture, biomass, ocean
С	4 - 8 GHz	Ocean, agriculture, general surface investigation
Х	8 - 12 GHz	Ocean, agriculture, general surface investigation (high resolution)
Ku	14 - 18 GHz	Glacial/ice, snow cover
Ka	27 - 47 GHz	Glacial/ice, very high resolution imagery

Synthetic Aperture Radar satellite missions

SARscape data processing in ENVI

Import

Multilooking

Coregistration

Filtering

Geocoding & Radiometric calibration

🖹 SA	Rscape
÷	Import Data
÷. 💼	Basic
÷. 💼	Gamma and Gaussian Filtering
÷. 💼	Focusing
÷. 💼	Interferometry
÷	Interferometric Stacking
÷	ScanSAR Interferometry
÷. 💼	Polarimetry and PolInSAR
÷	General Tools
÷	SARscape Task-IDL Scripting-Modeler
-	

SARscape data processing in ENVI

SARscape data processing in ENVI

Import

Multilooking

Coregistration

Filtering

Geocoding & Radiometric calibration

Data Import

Import

- Subset by ROI
- Choose polarization
- Mosaic same track

Imported Sentinel-1

Multilooking

HARRIS

Import

- Subset by ROI
- Choose polarization
- Mosaic same track

Multilooking

- Choose grid size
- Removes speckle

Input

Convert to ground range

Imported Sentinel-1

Multilooked

Coregistration

Coregistration

- Aligns pixel footprints when working with overlapping images
- Critical step for multitemporal analyses

Despeckling

Coregistration

- Aligns pixel footprints when working with overlapping images
- Critical step for multitemporal analyses

Filtering

Geocoding and Radiometric Calibration

SARscape Basic

Multilooking

re 20 3⊞

Geocoding & Radiometric Calibration

Apply projection

Input Parameter

 Calibrate backscatter intensity to allow for direct comparison to other scenes

SARscape Import

SENTINEL -

re 2 ⊞

SARscape and the ENVI modeler

Automate and batch process your data in the ENVI modeler with SARscape tasks

Full preprocessing and fusion of Sentinel-1 (all bands) and Sentinel-2

Skaneateles Lake, NY Red- Red (Sentinel-2) Green- Green (Sentinel-2) Blue- VV (Sentinel-1)

Synthetic Aperture Radar Applications

DEM Generation

Terrain and Infrastructure Monitoring

Displacement

DEM

Multi-Temporal Analyses of the Displacement

Identification of areas affected by catastrophic events

Deforestation

Tracking Deforestation

	0: Unclassified
✓ 🗖	1: 18-AUG-2016 - '06-AUG-2016
✓ 🗖	2: 11-SEP-2016 - 18-AUG-2016
✓ 🗖	3: 05-OCT-2016 - 11-SEP-2016
✓ 🔳	4: 17-OCT-2016 - 05-OCT-2016
✓ ■	5: 29-OCT-2016 - 17-OCT-2016
✓ 🔳	6: 10-NOV-2016 - 29-OCT-2016
✓ ■	7: 22-NOV-2016 - 10-NOV-2016
✓ 🔳	8: 16-DEC-2016 - 22-NOV-2016
✓ 🔳	9: 28-DEC-2016 - 16-DEC-2016
✓ 🗖	10: 09-JAN-2017 - 28-DEC-2016
✓ 🗖	11: 02-FEB-2017 - 09-JAN-2017
✓ 🗖	12: 14-FEB-2017 - 02-FEB-2017
✓ 📒	13: 26-FEB-2017 — 14-FEB-2017
✓ 💻	14: 10-MAR-2017 - 26-FEB-2017
✓ 💻	15: 22-MAR-2017 - /10-MAR-2017
✓ 💻	16: 03-APR-2017 - 22-MAR-2017

Disaster Management: Flood Mapping

Hurricane Florence, September 2018

Disaster Management: Flood Mapping

Pre-storm SAR

Disaster Management: Flood Mapping

Post-storm SAR

Flood map products

Dual-polarimetric RGB

Threshold and ratio calculation

Activity Monitoring: Change Detection

Coherent change detection over Burning Man Festival Black Rock Desert, NV, USA

R: Coherence

G: Average backscatter

B: Difference in backscatter between pre (2018-06-08) and during (2018-08-31)

Thank you!

Dipak Paudyal, APAC Geospatial Email: <u>dpaudyal@apacgeospatial.com</u> M: 045 000 4946