

NIWA DAS database upgrade

Brent Wood
NIWA

National Institute of Water and Atmspheric Research

 New Zealand Crown Research Institute (CRI)

Government owned commercially funded environmental
research institute, with science centres focused on:

Aquaculture Fisheries
Atmosphere Freshwater and Estuaries
Climate Natural Hazards
Coasts and Oceans Pacific Rim
Environmental Information

http://niwa.co.nz

http://niwa.co.nz/

Who am I?

Brent Wood

Joined NIWA (or its predecessor) in 1975

Fisheries field/seagoing technician

Data manager/database manager/database designer

Metadata manager (Geonetwork)

Open source GIS user (QGIS, PostGIS, Spatialite, GMT,
 Mapserver, Geoserver, R, ...)

This presentation describes a rebuild of the NIWA research vessel Data Acquisition System
database

It now stores around 40 billion instrument/sensor readings captured since 1990

The 2021 rebuild addressed performance issues with the earlier design, and undertook to
meet several user requirements (in addition to normal data management needs):

- rapid access to fine scale (1 min to 1 sec) temporal data (eg: diurnal analytics)
- rapid access to courser scale (1 hr to 1 day) data (eg: seasonal/annual analytics)
- near real time access to manage operational deployments (eg: underwater camera)

 It describes: why we did it (as above)
 what we did
 how we did it
 with some example SQL queries

 (Gets a bit technical WRT to SQL queries!)

DAS database:

NIWA Data Acquisition System database

Stores instrument/sensor readings, mostly from RV Tangaroa

Historically at 1 min intervals

Captured by various DAS software applications since 1990:

 - original OS/2 DAS developed by Datacom
 - FRC in-house DAS (Python – storage optimised - Mb/Gb, not Tb)
 - Techsas (IFREMER commercial application)

User application: DASmap Developed for NIWA in early/mid
2000’s by Integrated Mapping
(John McCombs, Christchurch)

Written using Mapserver & Python
Mapscript as web application

Became too slow as the db grew
over a decade or so, but still meets
general user needs for previewing &
extracting reading data

Alter this to use new database:
 - modify embedded SQL’s to query
 hstore table/column structure -
 - new queries returning identical result
 as old queries on old tables

PostgreSQL:

“World’s most advanced Open Source Database” (or so they claim!)

PostgreSQL is generally regarded as a reasonable alternative to Oracle as a robust,
secure enterprise level RDBMS

PostgreSQL is an ORDBMS, not just an RDBMS (supports object based non-relational
data)

PostgreSQL has more features than ANY other RDBMS, and is fully ACID compliant
(Atomicity, Consistency, Isolation, Durability)

Already widely used in NIWA

Postgres extensions – What are they:

Additions to core Postgres (often third party) to add focused and specific functionality

The extensions used in this case:

PostGIS: adds OGC SFS spatial datatypes and functions/operators
- probably the most complete and powerful spatial functionality of any RDBMS

hstore: adds key/value datatype and functions to enter, access & decompose these
 - simpler than jsonb and meets requirements (core extension)

TimescaleDB: adds timeseries functionality and auto partitioning
- think of it as doing for timeseries data what PostGIS does for

spatial data

Postgis:

Postgis provides an enhanced spatial data
capability for the Postgres ORDBMS

Exceeds the specification for OGC SFS
specification for SQL

Meets the ANSI MM/SQL specifications
for SQL databases

hstore:

Core extension providing support for key/value storage in Postgres

What are key-value pairs?

A value stored in an hstore column is a list of keys, each with a value (so a pair)
1=>3.14159,2=>1.4142,3=>2.7183, ...

Why are they appropriate for this use case?

The “key” value is an identifier for a sensor on an instrument
(instrument metadata is managed in various other database tables)

The “value” is the sensor value for the timestamp (in another column) in the record

Thus a database column stores all sensor readings for a given timestamp using a
structured but non-normalised No-SQL approach within an SQL database

TimescaleDB:

Provides storage, query and analytical tools for timeseries data in a Postgres database

Fundamentally changes your Postgres database –

provides auto-partitioning of timeseries tables (hypertables) for highly optimised
 performance with never ending streams of accumulating timeseries data

adds tools to aggregate, count, analyse records (quickly!)

we use the free open source version in a local Postgres database, but it is also
available on AWS, Azure & Google Cloud.

http://www.timescale.com

http://www.timescale.com/

Old database: Postgres + Postgis
- Readings normalised (robust, RDBMS “best practice” design),

 one timestamped reading per record
 - 1 minute interval

- Manual one year partitioning
- 600,000,000 readings = 600,000,000 records
- DASmap gui took >3 minutes to load 1 voyage

New database: Postgres + Postgis/Timescaledb/hstore
- Readings as hstore key/value pairs (non-relational approach),

 one timestamp per record
 many readings/record, but individually accessible

- 1 second interval
- Automated 1 week chunks in Timescaledb hypertable
- ~40,000,000,000 readings = ~70,000,000 records
- DASmap gui takes <10 seconds to load 1 voyage

Basic table structures:

Old reading table:

(manually maintained yearly partition, 1 min readings)
t_reading

timer timestamp primary key,
sensor int pkey + foreign key on t_sensor (key),
value int

New reading table:

(Timescaledb hypertable – auto partition weekly, 1 sec readings)
t_reading_hstore_sec

timer timestamp primary key
values_hstore hstore

1 min LIFO extract SQL:

get 1 day of 1 minute LIFO style readings from 1 sec table:

SELECT DISTINCT date_trunc('minute',_timer)+interval '1 minute' as timer,
 key::int,
 first_value(value) as last_value
OVER (PARTITION BY key, date_trunc('minute',_timer) order by _timer desc)
FROM (SELECT timer as _timer,
 (each(values_sec)).*
 FROM t_reading_hstore_sec
 WHERE timer between '2013-04-15 00:00:00'
 and '2013-04-15 23:59:59') as x
ORDER BY key::int, timer;

SELECT DISTINCT date_trunc('minute',_timer)+interval '1 minute' as timer,
 key::int,
 first_value(value) as last_value
OVER (PARTITION BY key, date_trunc('minute',_timer) ORDER BY _timer desc)
FROM (SELECT timer as _timer,
 (each(values_sec)).*
 FROM t_reading_hstore_sec
 WHERE timer between '2013-04-15 00:00:00'
 and '2013-04-15 23:59:59') as x
ORDER BY key::int, timer;

Any guesses how long it takes (from 40b readings)?

To get the values for 1 minute only (just change “between” value): ???

To get the values for 1 day (1440 minutes): ???

SELECT DISTINCT date_trunc('minute',_timer)+interval '1 minute' as timer,
 key::int,
 first_value(value) as last_value
OVER (PARTITION BY key, date_trunc('minute',_timer) ORDER BY _timer desc)
FROM (SELECT timer as _timer,
 (each(values_sec)).*
 FROM t_reading_hstore_sec
 WHERE timer between '2013-04-15 00:00:00'
 and '2013-04-15 23:59:59') as x
ORDER BY key::int, timer;

Any guesses how long it takes (from 40b readings)?

To get the values for 1 minute only (just change “between” value): <30 ms

To get the values for 1 day (1440 minutes): ~55 sec (~7hrs for a year)

SELECT DISTINCT date_trunc('minute',_timer)+interval '1 minute' as timer,
 key::int,
 first_value(value) as last_value
OVER (PARTITION BY key, date_trunc('minute',_timer) ORDER BY _timer desc)
FROM (SELECT timer as _timer,
 (each(values_sec)).*
 FROM t_reading_hstore_sec
 WHERE timer between '2013-04-15 00:00:00'
 and '2013-04-15 23:59:59') as x
ORDER BY key::int, timer;

 timer | key | last_value
---------------------+-----+-------------------------------
 2013-04-15 00:01:00 | 27 | 17.799999237060547
 2013-04-15 00:02:00 | 27 | 17.700000762939453
 …
 2013-04-15 01:20:00 | 63 | 1385.6600341796875
 2013-04-15 01:21:00 | 63 | 1394.30004882815
 …

SQL to get 1 minute lats/longs for a trip (7 weeks) from hstore key/value pairs:

Use COALESCE to get first non-NULL value as there are several GPS units with
different keys over the years...

SELECT timer,
 COALESCE (value -> '67', value -> '307', value -> '317', '') as lat,
 COALESCE (value -> '68', value -> '308', value -> '318', '') as lon
FROM t_reading_hstore_min
WHERE timer >= '20210101'::date
 AND timer <= '20210217'::date
ORDER BY timer;

Execution time: ???

SQL to get one minute lats/longs for a trip (6 weeks) from hstore key/value pairs:

SELECT timer,
 COALESCE (value -> '67', value -> '307', value -> '317', '') as lat,
 COALESCE (value -> '68', value -> '308', value -> '318', '') as lon
FROM t_reading_hstore_min
WHERE timer >= '20210101'::date
 AND timer <= '20210217'::date
ORDER BY timer;

Execution time: ~1 sec

SQL to get one minute lats/longs for a trip of 7 weeks) from hstore key/value pairs:

SELECT timer,
 COALESCE (value -> '67', value -> '307', value -> '317', '') as lat,
 COALESCE (value -> '68', value -> '308', value -> '318', '') as lon
FROM t_reading_hstore_min
WHERE timer >= '20210101'::date
 AND timer <= '20210217'::date
ORDER BY timer;

 timer | lat | lon
---------------------+------------+-------------
 2021-01-01 00:00:00 | -41.311622 | 174.811812
 2021-01-01 00:01:00 | -41.311621 | 174.811812
 2021-01-01 00:02:00 | -41.311621 | 174.811812
...

SQL to create a voyage trackline from lat & lon coordinates (yep - GIS at last!):

-- build linestring from raw hstore coords
-- use ST_RemoveRepeatedPoints() to clean repeated points
-- use ST_Simplify() to drop resolution to about 10m (remove redundant - nearby - vertices)
-- ST_Simplify @ 0.00001=34000 vertices, @ 0.0001=10000 vertices
SELECT ST_AsText(
 ST_Simplify(
 ST_RemoveRepeatedPoints(
 ST_Makeline(

 ST_SetSRID(
 ST_MakePoint(

 COALESCE (value -> '68', value -> '308', value -> '318')::real,
 COALESCE (value -> '67', value -> '307', value -> '317')::real),
 4326)
 ORDER BY timer)
),0.0001)) as track

FROM t_reading_hstore_min
WHERE timer >= '20210101'::date
 AND timer <= '20210217'::date;

Execution time: ???

SQL to create a voyage trackline from lat & lon coordinates:

-- build linestring from raw hstore coords
-- use ST_RemoveRepeatedPoints() to clean repeated points
-- use ST_Simplify() to drop resolution to about 10m (remove redundant - nearby - vertices)
-- ST_Simplify @ 0.00001=34000 vertices, @ 0.0001=10000 vertices
SELECT ST_AsText(
 ST_Simplify(
 ST_RemoveRepeatedPoints(
 ST_Makeline(

 ST_SetSRID(
 ST_MakePoint(

 COALESCE (value -> '68', value -> '308', value -> '318')::real,
 COALESCE (value -> '67', value -> '307', value -> '317')::real),
 4326)
 ORDER BY timer)
),0.0001)) as track

FROM t_reading_hstore_min
WHERE timer >= '20210101'::date
 AND timer <= '20210217'::date;

Execution time: <1.3 sec

SQL to return instruments/sensors for a survey:

SELECT i.instrument_code||'_'||m.measurement_code as reading,
 m.measurement_key
FROM t_measurement m,
 t_instrument I
WHERE m.measurement_key::varchar in (
 SELECT distinct key
 FROM (
 SELECT skeys(value) as key
 FROM t_reading_hstore_min
 WHERE timer = '20210101'::date
 AND timer <= '20210217'::date
) as mytable)
 and m.instrument_key = i.instrument_key
 ORDER BY reading;

Execution time: ???

SQL to return all sensors with data for a survey:

SELECT i.instrument_code||'_'||m.measurement_code as reading,
 m.measurement_key
FROM t_measurement m,
 t_instrument I
WHERE m.measurement_key::varchar in (
 SELECT distinct key
 FROM (
 SELECT skeys(value) as key
 FROM t_reading_hstore_min
 WHERE timer = '20210101'::date
 AND timer <= '20210217'::date
) as mytable)
 and m.instrument_key = i.instrument_key
 ORDER BY reading;

Execution time: <7ms

SQL to return all sensors with data for a survey:

SELECT i.instrument_code||'_'||m.measurement_code as reading,
 m.measurement_key
FROM t_measurement m,
 t_instrument I
WHERE m.measurement_key::varchar in (
 SELECT distinct key
 FROM (
 SELECT skeys(value) as key
 FROM t_reading_hstore_min
 WHERE timer = '20210101'::date
 AND timer <= '20210217'::date
) as mytable)
 AND m.instrument_key = i.instrument_key
 ORDER BY reading;

 reading | measurement_key
-------------------------+-----------------
 AWS_AirTemp | 27
 AWS_BarPressur | 37
 AWS_DewPoint | 56
 Eppley_PIR1_mV | 267
 Eppley_PIR1_Rdome | 268
 GYRO_PlHDT | 95
 Rainfall_RG_mm | 473
 ...

SQL to return 1000 vessel and DTIS camera point locations from 1 min table

Use in QGIS to display camera & vessel positions in near real time during deployment
(builds the point geometries on-the-fly from hstore key/value pairs in auto refresh map layer)

select timer,
 extract(epoch from timer) as id, h.value -> '307' as vess_lat,
 h.value -> '308' as vess_lon, h.value -> '256' as dtis_lat,
 h.value -> '257' as dtis_lon,
 (ST_SetSRID(
 ST_Makepoint(

 (h.value -> '257')::decimal(10,7),
 (h.value -> '256')::decimal(10,7)),4326)) as dtis_geom,

 (ST_SetSRID(
 ST_Makepoint(
 (h.value -> '308')::decimal(10,7),
 (h.value -> '307')::decimal(10,7)),4326)) as geom
from t_reading_hstore_min h
where (h.value -> '256') notnull
 and (h.value -> '256') != '0.0'
 and timer > '2018-05-14' –- or use now() - interval(‘1 day’)
order by timer asc limit 1000;

Execution time: ???

The transect data from the query
 from QGIS

and zoomed in

SQL to return vessel and DTIS camera (HiPAP) point locations from 1 min table

Use in QGIS to display camera & vessel positions in near real time
(builds the point geometries on-the-fly from hstore key/value pairs)

select timer,
 extract(epoch from timer) as id, h.value -> '307' as vess_lat,
 h.value -> '308' as vess_lon, h.value -> '256' as dtis_lat,
 h.value -> '257' as dtis_lon,
 (ST_SetSRID(
 ST_Makepoint(

 (h.value -> '257')::decimal(10,7),
 (h.value -> '256')::decimal(10,7)),4326)) as dtis_geom,

 (ST_SetSRID(
 ST_Makepoint(
 (h.value -> '308')::decimal(10,7),
 (h.value -> '307')::decimal(10,7)),4326)) as geom
from t_reading_hstore_min h
where (h.value -> '256') notnull
 and (h.value -> '256') != '0.0'
 and timer > '2018-05-14'
order by timer asc limit 1000;

Execution time: 50ms

The transect data from the query

Zoomed in

On disk data volumes:

Difficult to be accurate, we are still finding new indexes to build to improve performance
(which take up space)…

It seems the new approach stores around 70x the number of readings in about 40% of
the space used by the old database.

Summary:

Postgresql with Postgis, Timescaledb and hstore extensions works pretty much out of
the box, is very fast, and very effective.

We have not (yet) had any instances where we could not reasonably easily and quickly
extract the data we desired in the format we needed.

We are pleased and impressed with this suite, very fit for this purpose.

And situation normal – we have yet to complete the database documentation!

Types of sensors:

While most of the sensors are collecting environmental data, various vessel systems
(engines, pumps, etc) also provide telemetry data which is monitored and captured by
the DAS, and so ends up in the DAS database.

It is useful to have winch for an instrument deployed off that winch, and to have data
such as load, oil pressures and temperatures from engines and pumps, not just from
a science perspective, but from a vessel operation perspective.

Similarly – an acoustic scientist who finds noise in their data for a transect can see
what else was happening at the time –

eg: engineers starting and testing a backup generator during a transect

This work was funded as a NIWA IT CAPEX project

My thanks to Andrea Mari and Simon Wood for getting this done, and within
budget!!!

Thank you for attending!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

